First trimester embryo-fetoscopic and ultrasound-guided fetal blood sampling for ex vivo viral transduction of cultured human fetal mesenchymal stem cells.
نویسندگان
چکیده
BACKGROUND Intrauterine stem cell transplantation is a promising approach for early onset genetic diseases. However, its utility is limited by the development of the fetal immune system after 14 weeks gestation. An ex vivo gene therapy approach targeting autologous first trimester stem cells to replace the missing or defective gene product should overcome this barrier. We investigated the feasibility of harvesting circulating first trimester human fetal mesenchymal stem cells (hfMSCs) for ex vivo gene therapy. METHODS Thin-gauge embryofetoscopic-directed or ultrasound-guided blood sampling (FBS) was performed in 18 pre-termination fetuses at a mean of 10(+0) (range 7(+2) to 13(+4)) weeks gestation through extra-fetal vessels. Harvested blood was plated for isolation of hfMSC and transduced by lentiviruses. RESULTS FBS was successful in 12/18 procedures (67%). Success rates were comparable in fetoscopic (4/6) and ultrasound-guided (8/12) procedures, but procedural time was shorter in the ultrasound-guided arm (P = 0.01). Fetal bradycardia occurred post-FBS in 33% and 25% of fetoscopic and ultrasound cases, respectively, 5 min post-procedure. hfMSCs were isolated in two-thirds of cases, with high efficiency lentiviral transduction achieved without affecting short-term cell renewal. CONCLUSIONS This phase-one study demonstrates the feasibility of the ex vivo fetal gene therapy approach, in which harvested hfMSCs are genetically manipulated prior to infusion back into the fetus where they should engraft and home to injured tissues. The fetal ex vivo gene therapy paradigm is also of relevance to haemopoietic stem cells to treat inherited haematological diseases. Optimization of stem cell harvest and longer-term safety is required before translation into clinical trials in ongoing pregnancies.
منابع مشابه
Expansion of Non-Enriched Cord Blood Stem/Progenitor Cells CD34+ CD38- Using Liver Cells
Many investigators have used xenogeneic, especially murine stromal cells and fetal calf serum to maintain and expand human stem cells. The proliferation and expansion of human hematopoietic stem cells in ex vivo culture were examined with the goal of generating a suitable protocol for expanding hematopoietic stem cells for patient transplantation. Using primary fetal liver cells, we established...
متن کاملEXPANSION OF HUMAN CORD BLOOD PRIMITIVE PROGENITORS IN SERUM-FREE MEDIA USING HUMAN BONE MARROW MESENCHYMAL STEM CELLS
Ex vivo expansion of human umbilical cord blood cells (HUCBC) is explored by several investigators to enhance the repopulating potential of HUCBC. The proliferation and expansion of human hematopoietic stem cells (HSC) in ex vivo culture was examined with the goal of generating a suitable clinical protocol for expanding HSC for patient transplantation. Using primary human mesenchymal stem ...
متن کاملIsolation of mesenchymal stem cells from fetal tissues
Backgrond&Objective: The ability of mesenchymalstem cells (MSCs) differentiation into many cell types, as well as their ex vivo expansion potential, makes them as an attractive therapeutic tool for cell transplantation and tissue engineering. This project was designed to improve isolation culture and characterization of human amniotic membran-derivedMSSCS and human warton ,s jelly- derived MSCs...
متن کاملA New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells
Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...
متن کاملEx vivo Expansion and Differentiation of Mesenchymal Stem Cells from Goat Bone Marrow
Objective(s) Mesenchymal stem cells (MSCs) from large animals as goat which is genetically more closely related to human have rarely been gained attentions. The present study tried to isolate and characterize MSCs from goat bone marrow. Materials and Methods Fibroblastic cells appeared in goat marrow cell culture were expanded through several subcultures. Passaged-3 cells were then different...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human reproduction
دوره 23 11 شماره
صفحات -
تاریخ انتشار 2008